Multiple Vehicles Semi-Self-driving System Using GNSS Coordinate Tracking under Relative Position with Correction Algorithm
نویسندگان
چکیده
This paper describes a simple and low-cost semiself-driving system which is constructed without cameras or image processing. In addition, a position correction method is presented by using a vehicle dynamics. Conventionally, selfdriving vehicle is operated by various expensive environmental recognition sensors. It results in rise in prices of the vehicle, and also the complicated system with various sensors tends to be a high possibility of malfunction. Therefore, we propose the semi-self-driving system with a single type of global navigation satellite system (GNSS) receiver and a digital compass, which is based on a concept of a preceding vehicle controlled by a human manually and following vehicles which track to the preceding vehicle automatically. Each vehicle corrects coordinate using current velocity and heading angle from sensors. Several experimental and simulation results using our developed smallscale vehicles demonstrate the validity of the proposed system and correction method. Keywords—Self-driving, positioning; global navigation satellite system (GNSS); Global Positioning System (GPS); GLONASS
منابع مشابه
Spatial Predictive Control for Agile Semi-Autonomous Ground Vehicles
This paper presents a formulation to the obstacle avoidance problem for semi-autonomous ground vehicles. The planning and tracking problems have been divided into a two-level hierarchical controller. The high level solves a nonlinear model predictive control problem to generate a feasible and obstacle free path. It uses a nonlinear vehicle model and utilizes a coordinate transformation which us...
متن کاملMultiple Target Tracking With a 2-D Radar Using the JPDAF Algorithm and Combined Motion Model
Multiple target tracking (MTT) is taken into account as one of the most important topics in tracking targets with radars. In this paper, the MTT problem is used for estimating the position of multiple targets when a 2-D radar is employed to gather measurements. To do so, the Joint Probabilistic Data Association Filter (JPDAF) approach is applied to tracking the position of multiple targets. To ...
متن کاملMrera (minimum Range Error Algorithm): Rfid - Gnss Integration for Vehicle Navigation in Urban Canyons
A new GPS positioning algorithm for vehicle tracking namely the “Minimum Range Error Algorithm” (MRERA) was proposed by E. Mok and L. Lam, to track vehicles in dense high-rise environments without the use of dead reckoning, and it can also be used for general geolocation positioning applications. With this algorithm, it is possible to identify which section of road network the mobile user is lo...
متن کاملMultiple-object tracking while driving: the multiple-vehicle tracking task.
Many contend that driving an automobile involves multiple-object tracking. At this point, no one has tested this idea, and it is unclear how multiple-object tracking would coordinate with the other activities involved in driving. To address some of the initial and most basic questions about multiple-object tracking while driving, we modified the tracking task for use in a driving simulator, cre...
متن کاملDesign of an Intelligent Controller for Station Keeping, Attitude Control, and Path Tracking of a Quadrotor Using Recursive Neural Networks
During recent years there has been growing interest in unmanned aerial vehicles (UAVs). Moreover, the necessity to control and navigate these vehicles has attracted much attention from researchers in this field. This is mostly due to the fact that the interactions between turbulent airflows apply complex aerodynamic forces to the system. Since the dynamics of a quadrotor are non-linear and the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017